History

EyeSeeTec was founded in 2013. The core group of EyeSeeTec originated from a research group working in the Hospital of the Ludwig-Maximilians-University led by Prof. Dr. Erich Schneider from 2004-2014. The group was dedicated to eye tracking and eye tracking applications for research and medical purposes.

EyeSeeTec concentrates the knowledge of a decade of research into its current technology.

A (incomplete) list of publications with EyeSeeCam:

EyeSeeCam on PubMed

https://www.ncbi.nlm.nih.gov/pubmed/?term=EyeSeeCam

Publications with EyeSeeTec Staff as (Co-) Authors

[1]     Agrawal Y, Schubert M. C, Migliaccio A. A, Zee D. S, Schneider E, Lehnen N, and Carey J. P. Evaluation of quantitative head impulse testing using search coils versus video-oculography in older individuals. Otol Neurotol, 35(2):283–288, 2014. http://dx.doi.org/10.1097/MAO.0b013e3182995227. (IF 1.6).

[2]     Bartl K, Lehnen N, Kohlbecher S, and Schneider E. Head impulse testing using video-oculography. Ann N Y Acad Sci, 1164:331–333, 2009. http://dx.doi.org/10.1111/j.1749-6632.2009.03850.x. (IF 4.37).

[3]     Boening G, Bartl K, Dera T, Bardins S, Schneider E, and Brandt T. Mobile eye tracking as a basis for real-time control of a gaze driven head-mounted video camera. In Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, ETRA ’06, 56–56, New York, NY, USA, 2006. ACM. http://doi.acm.org/10.1145/1117309.1117341.

[4]     Brandt T, Glasauer S, and Schneider E. A third eye for the surgeon. J Neurol Neurosurg Psychiatry, 77(2):278, 2006. http://dx.doi.org/10.1136/jnnp.2005.073734. (IF 5.58).

[5]     Claassen J, Feil K, Bardins S, Teufel J, Spiegel R, Kalla R, Schneider E, Jahn K, Schniepp R, and Strupp M. Dalfampridine in patients with downbeat nystagmus–an observational study. J Neurol, 260(8):1992–1996, 2013. http://dx.doi.org/10.1007/s00415-013-6911-5. (IF 3.84).

[6]     Claassen J, Spiegel R, Kalla R, Faldon M, Kennard C, Danchaivijitr C, Bardins S, Rettinger N, Schneider E, Brandt T, Jahn K, Teufel J, Strupp M, and Bronstein A. A randomised double-blind, cross-over trial of 4-aminopyridine for downbeat nystagmus–effects on slowphase eye velocity, postural stability, locomotion and symptoms. J Neurol Neurosurg Psychiatry, 84 (12):1392–1399, 2013. http://dx.doi.org/10.1136/jnnp-2012-304736. (IF 5.58).

[7]     Dera T, Boning G, Bardins S, and Schneider E. Low-latency video tracking of horizontal, vertical, and torsional eye movements as a basis for 3dof realtime motion control of a head-mounted camera. In Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International Conference on, 5191–5196, 2006. http://dx.doi.org/10.1109/ICSMC.2006.385132.

[8]     Einhäuser W, Schumann F, Bardins S, Bartl K, Böning G, Schneider E, and König P. Human eye-head co-ordination in natural exploration. Network, 18(3):267–297, 2007. http://dx.doi.org/10.1080/09548980701671094. (IF 0.5).

[9]     Einhäuser W, Moeller G. U, Schumann F, Conradt J, Vockeroth J, Bartl K, Schneider E, and König P. Eye-head coordination during free exploration in human and cat. Ann N Y Acad Sci, 1164:353–366, 2009. http://dx.doi.org/10.1111/j.1749-6632.2008.03709.x. (IF 4.37).

[10]     Einhäuser W, Schumann F, Vockeroth J, Bartl K, Cerf M, Harel J, Schneider E, and König P. Distinct roles for eye and head movements in selecting salient image parts during natural exploration. Ann N Y Acad Sci, 1164:188–193, 2009. http://dx.doi.org/10.1111/j.1749-6632.2008.03714.x. (IF 4.37).

[11]     Feil K, Claassen J, Bardins S, Teufel J, Krafczyk S, Schneider E, Schniepp R, Jahn K, Kalla R, and Strupp M. Effect of chlorzoxazone in patients with downbeat nystagmus: a pilot trial. Neurology, 81(13):1152–1158, 2013. http://dx.doi.org/10.1212/WNL.0b013e3182a55f6d. (IF 8.30).

[12]     Glasauer S, Schneider E, Jahn K, Strupp M, and Brandt T. How the eyes move the body. Neurology, 65(8):1291–1293, 2005. http://dx.doi.org/10.1212/01.wnl.0000175132.01370.fc. (IF 8.30).

[13]     Grill E, Heuberger M, Strobl R, Saglam M, Holle R, Linkohr B, Ladwig K.-H, Peters A, Schneider E, Jahn K, and Lehnen N. Prevalence, determinants, and consequences of vestibular hypofunction. results from the kora-ff4 survey. Frontiers in neurology, 9:1076, 2018. http://dx.doi.org/10.3389/fneur.2018.01076. (IF 3.552).

[14]     Guinand N, Van de Berg R, Cavuscens S, Ranieri M, Schneider E, Lucieer F, Kingma H, Guyot J.-P, and Perez Fornos A. The video head impulse test to assess the efficacy of vestibular implants in humans. Frontiers in neurology, 8:600, 2017. http://dx.doi.org/10.3389/fneur.2017.00600. (IF 3.552).

[15]     Heuberger M, Saglam M, Todd N. S, Jahn K, Schneider E, and Lehnen N. Covert anti-compensatory quick eye movements during head impulses. PLoS One, 9(4):e93086, 2014. http://dx.doi.org/10.1371/journal.pone.0093086. (IF 3.53).

[16]     Heuberger M, Grill E, Saglam M, Ramaioli C, Müller M, Strobl R, Holle R, Peters A, Schneider E, and Lehnen N. Usability of the video head impulse test: Lessons from the population-based prospective kora study. Frontiers in neurology, 9:659, 2018. https://dx.doi.org/10.3389%2Ffneur.2018.00659. (IF 3.508).

[17]     Hüfner K, Frenzel C, Kremmyda O, Adrion C, Bardins S, Glasauer S, Brandt T, and Strupp M. Esophoria or esotropia in adulthood: a sign of cerebellar dysfunction? J Neurol, 262(3): 585–592, 2015. http://dx.doi.org/10.1007/s00415-014-7614-2.

[18]     Kalla R, Spiegel R, Claassen J, Bardins S, Hahn A, Schneider E, Rettinger N, Glasauer S, Brandt T, and Strupp M. Comparison of 10-mg doses of 4-aminopyridine and 3,4-diaminopyridine for the treatment of downbeat nystagmus. J Neuroophthalmol, 31(4):320–325, 2011. http://dx.doi.org/10.1097/WNO.0b013e3182258086. (IF 1.80).

[19]     Keller J, Gorges M, Aho-Özhan H. E. A, Uttner I, Schneider E, Kassubek J, Pinkhardt E. H, Ludolph A. C, and Lule D. Eye-tracking control to assess cognitive functions in patients with amyotrophic lateral sclerosis. JoVE, 2016. http://dx.doi.org/10.3791/54634. (IF 1.1).

[20]     Kohlbecher S, Bartl K, Bannat A, Sosnowski S, Kühnlenz K, Wallhoff F, Rigoll G, and Schneider E. A test environment for studying the human-likeness of robotic eye movements. In Liu Y and Sun D, editors, Biologically Inspired Robotics. CRC Press, Boca Raton, FL, USA, 2012.

[21]     Kohlbecher S, Bartl K, Bardins S, and Schneider E. Low-latency combined eye and head tracking system for teleoperating a robotic head in real-time. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA ’10, 117–120, New York, NY, USA, 2010. ACM. http://doi.acm.org/10.1145/1743666.1743695.

[22]     Kugler G, Huppert D, Schneider E, and Brandt T. How acrophobia impairs visual exploration and gait. Nervenarzt, 84(10): 1233–1237, 2013. http://dx.doi.org/10.1007/s00115-013-3905-6. (IF 0.86).

[23]     Kugler G, Huppert D, Eckl M, Schneider E, and Brandt T. Visual exploration during locomotion limited by fear of heights. PLoS One, 9(8):e105906, 2014. http://dx.doi.org/10.1371/journal.pone.0105906. (IF 3.53).

[24]     Kugler G, Huppert D, Schneider E, and Brandt T. Fear of heights freezes gaze to the horizon. J Vestib Res, 24(5-6): 433–441, 2014. http://dx.doi.org/10.3233/VES-140529. (IF 1.46).

[25]     Kugler G, ’t Hart B. M, Kohlbecher S, Bartl K, Schumann F, Einhäuser W, and Schneider E. Visual search in the real world: Color vision deficiency affects peripheral guidance, but leaves foveal verification largely unaffected. Front Hum Neurosci, 9: 680, 2015. http://dx.doi.org/10.3389/fnhum.2015.00680. (IF 3.6).

[26]     Kugler G, ’t Hart B. M, Kohlbecher S, Einhäuser W, and Schneider E. Gaze in visual search is guided more efficiently by positive cues than by negative cues. PLoS One, 10(12): e0145910, 2015. http://dx.doi.org/10.1371/journal.pone.0145910. (IF 3.53).

[27]     Lehnen N, Schneider E, and Jahn K. Do neurologists need the head impulse test? Nervenarzt, 84(8):973–974, 2013. http://dx.doi.org/10.1007/s00115-013-3822-8. (IF 0.86).

[28]     Lehnen N, Schneider E, and Jahn K. Klinische untersuchungen bei schwindel: Kopfimpulstest und dynamische sehschärfe. Neurotransmitter, 24:39–43, 2013.

[29]     Lehnen N, Heuser F, Saglam M, Schulz C. M, Wagner K. J, Taki M, Kochs E. F, Jahn K, Brandt T, Glasauer S, and Schneider E. Opioid-induced nausea involves a vestibular problem preventable by head-rest. PloS one, 10:e0135263, 2015. http://dx.doi.org/10.1371/journal.pone.0135263. (IF 3.057).

[30]     Lehnen N, Ramaioli C, Todd N. S, Bartl K, Kohlbecher S, Jahn K, and Schneider E. Clinical and video head impulses: a simple bedside test in children. Journal of neurology, 2017. http://dx.doi.org/10.1007/s00415-017-8450-y. (IF 3.408).

[31]     Lehnen N, Kellerer S, Knorr A. G, Schlick C, Jahn K, Schneider E, Heuberger M, and Ramaioli C. Head-movement-emphasized rehabilitation in bilateral vestibulopathy. Frontiers in neurology, 9:562, 2018. https://dx.doi.org/10.3389%2Ffneur.2018.00562. (IF 3.552).

[32]     Luis L, Costa J, Munoz E, de Carvalho M, Carmona S, Schneider E, Gordon C. R, and Valls-Sole J. Vestibulo-ocular reflex dynamics with head-impulses discriminates spinocerebellar ataxias types 1, 2 and 3 and Friedreich ataxia. J Vestib Res, 26: 327–334, 2016. http://dx.doi.org/10.3233/VES-160579. (IF 1.047).

[33]     Luis L, Lehnen N, Munoz E, de Carvalho M, Schneider E, Valls-Sole J, and Costa J. Anticompensatory quick eye movements after head impulses: A peripheral vestibular sign in spontaneous nystagmus. J Vestib Res, 25:267–271, 2016. http://dx.doi.org/10.3233/VES-160566. (IF 1.047).

[34]     Luis L, Costa J, Vaz Garcia F, Valls-Sole J, Brandt T, and Schneider E. Spontaneous plugging of the horizontal semicircular canal with reversible canal dysfunction and recovery of vestibular evoked myogenic potentials. Otol Neurotol, 34(4):743–747, 2013. http://dx.doi.org/10.1097/MAO.0b013e318287f343. (IF 1.6).

[35]     Luis L, Zhu H, Costa J, Valls-Sole J, Brandt T, Zhou W, and Schneider E. Reply to the commentary on luis et al. spontaneous plugging of the horizontal semicircular canal with reversible canal dysfunction and recovery of vestibular evoked myogenic potentials. Otol Neurotol, 35(2):379–383, 2014. http://dx.doi.org/10.1097/MAO.0000000000000198. (IF 1.6).

[36]     Mossman B, Mossman S, Purdie G, and Schneider E. Age dependent normal horizontal vor gain of head impulse test as measured with video-oculography. J Otolaryngol Head Neck Surg, 44:29, 2015. http://dx.doi.org/10.1186/s40463-015-0081-7. (IF 2.02).

[37]     Ramaioli C, Colagiorgio P, Saglam M, Heuser F, Schneider E, Ramat S, and Lehnen N. The effect of vestibulo-ocular reflex deficits and covert saccades on dynamic vision in opioid-induced vestibular dysfunction. PLoS One, 9(10):e110322, 2014. http://dx.doi.org/10.1371/journal.pone.0110322. (IF 3.53).

[38]     Schöberl F, Irving S, Pradhan C, Bardins S, Trapp C, Schneider E, Kugler G, Bartenstein P, Dieterich M, Brandt T, and Zwergal A. Prolonged allocentric navigation deficits indicate hippocampal damage in tga. Neurology, 92:e234–e243, 2019. http://dx.doi.org/10.1212/WNL.0000000000006779. (IF 8.055).

[39]     Schulz C. M, Schneider E, Fritz L, Vockeroth J, Hapfelmeier A, Brandt T, Kochs E. F, and Schneider G. Visual attention of anaesthetists during simulated critical incidents. Br J Anaesth, 106(6):807–813, 2011. http://dx.doi.org/10.1093/bja/aer087. (IF 4.24).

[40]     Schulz C. M, Schneider E, Fritz L, Vockeroth J, Hapfelmeier A, Wasmaier M, Kochs E. F, and Schneider G. Eye tracking for assessment of workload: a pilot study in an anaesthesia simulator environment. Br J Anaesth, 106(1):44–50, 2011. http://dx.doi.org/10.1093/bja/aeq307. (IF 4.24).

[41]     Schulz C. M, Schneider E, Kohlbecher S, Hapfelmeier A, Heuser F, Wagner K. J, Kochs E. F, and Schneider G. The influence of anaesthetists’ experience on workload, performance and visual attention during simulated critical incidents. J Clin Monit Comput, 28(5):475–480, 2014. http://dx.doi.org/10.1007/s10877-013-9443-8. (IF 1.45).

[42]     Schumann F, Einhäuser-Treyer W, Vockeroth J, Bartl K, Schneider E, and König P. Salient features in gaze-aligned recordings of human visual input during free exploration of natural environments. J Vis, 8(14):12.1–1217, 2008. http://dx.doi.org/10.1167/8.14.12. (IF 2.33).

[43]     Smyth D, Mossman S, Weatherall M, Jolliffe E, Joshi P, Taylor J, Thorne K, Watson E, Leadbetter R, Mossman B, Moss T, Todd N, and Schneider E. Gentamicin vestibulotoxicity with modern systemic dosing regimens: a prospective study using video-oculography. Acta oto-laryngologica, 139:759–768, 2019. ISSN 1651-2251. http://dx.doi.org/10.1080/00016489.2019.1637935.

[44]     Spiegel R, Kalla R, Rettinger N, Schneider E, Straumann D, Marti S, Glasauer S, Brandt T, and Strupp M. Head position during resting modifies spontaneous daytime decrease of downbeat nystagmus. Neurology, 75(21):1928–1932, 2010. http://dx.doi.org/10.1212/WNL.0b013e3181feb22f. (IF 8.30).

[45]     Spiegel R, Kalla R, Classen J, Bardins S, Anciaes da Silva F, Farahmand P, Hahn A, Schneider E, Rettinger N, Jahn K, Brandt T, and Strupp M. Aminopyridine treatment in a patient with bilateral vestibular failure and cryptogenic downbeat nystagmus. J Neuroophthalmol, 32(2):190, 2012. http://dx.doi.org/10.1097/WNO.0b013e31824f397f. (IF 1.81).

[46]     Spiegel R, Claassen J, Teufel J, Bardins S, Schneider E, Lehrer Rettinger N, Jahn K, da Silva F. A, Hahn A, Farahmand P, Brandt T, Strupp M, and Kalla R. Resting in darkness improves downbeat nystagmus: evidence from an observational study. Annals of the New York Academy of Sciences, 1375:66–73, 2016. https://doi.org/10.1111/nyas.13172. (IF 4.277).

[47]     Srulijes K, Mack D. J, Klenk J, Schwickert L, Ihlen E. A. F, Schwenk M, Lindemann U, Meyer M, Srijana K. C, Hobert M. A, Brockmann K, Wurster I, Pomper J. K, Synofzik M, Schneider E, Ilg U, Berg D, Maetzler W, and Becker C. Association between vestibulo-ocular reflex suppression, balance, gait, and fall risk in ageing and neurodegenerative disease: protocol of a one-year prospective follow-up study. BMC Neurol, 15:192, 2015. http://dx.doi.org/10.1186/s12883-015-0447-5. (IF 2.04).

[48]     Stoll J, Kohlbecher S, Marx S, Schneider E, and Einhäuser W. Mobile three dimensional gaze tracking. Stud Health Technol Inform, 163:616–622, 2011.

[49]     ’t Hart M. B, Vockeroth J, Schumann F, Bartl K, Schneider E, König P, and Einhäuser W. Gaze allocation in natural stimuli: Comparing free exploration to head-fixed viewing conditions. Visual Cognition, 17(6-7):1132–1158, 2009. http://dx.doi.org/10.1080/13506280902812304. (IF 1.65).

[50]     Teufel J, Bardins S, Spiegel R, Kremmyda O, Schneider E, Strupp M, and Kalla R. Real-time computer-based visual feedback improves visual acuity in downbeat nystagmus – a pilot study. J Neuroeng Rehabil, 13(1):1, 2016. http://dx.doi.org/10.1186/s12984-015-0109-2. (IF 2.74).

[51]     Schneider E, Bartl K, Dera T, Bardins S, Boning G, Wagner P, and Brandt T. Gaze-aligned head-mounted camera with pan, tilt, and roll motion control for medical documentation and teaching applications. In Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International Conference on, 327–331, 2006. http://dx.doi.org/10.1109/ICSMC.2006.384403.

[52]     Schneider E, Villgrattner T, Vockeroth J, Bartl K, Kohlbecher S, Bardins S, Ulbrich H, and Brandt T. Eyeseecam: an eye movement-driven head camera for the examination of natural visual exploration. Ann N Y Acad Sci, 1164:461–467, 2009. http://dx.doi.org/10.1111/j.1749-6632.2009.03858.x. (IF 4.37).

[53]     Vockeroth J, Dera T, Boening G, Bartl K, Bardins S, and Schneider E. The combination of a mobile gaze-driven and a head-mounted camera in a hybrid perspective setup. In Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on, 2576–2581, 2007. http://doi.acm.org/10.1109/ICSMC.2007.4414044.

[54]     Vockeroth J, Bartl K, Pfanzelt S, and Schneider E. Medical documentation using a gaze-driven camera. Stud Health Technol Inform, 142:413–416, 2009.

[55]     Wagner P, Bartl K, Günthner W, Schneider E, Brandt T, and Ulbrich H. A pivotable head mounted camera system that is aligned by three-dimensional eye movements. In Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, ETRA ’06, 117–124, New York, NY, USA, 2006. ACM. http://doi.acm.org/10.1145/1117309.1117354.

Publications from other Labs

[1]     Bahnemann M, Hamel J, De Beukelaer S, Ohl S, Kehrer S, Audebert H, Kraft A, and Brandt S. A. Compensatory eye and head movements of patients with homonymous hemianopia in the naturalistic setting of a driving simulation. J Neurol, 262(2): 316–325, 2015. http://dx.doi.org/10.1007/s00415-014-7554-x.

[2]     Blödow A, Helbig R, Wichmann N, Bloching M, and Walther L. E. [the video head impulse test: first clinical experiences]. HNO, 61(4):327–334, 2013. http://dx.doi.org/10.1007/s00106-012-2592-0.

[3]     Blödow A, Helbig R, Wichmann N, Wenzel A, Walther L. E, and Bloching M. B. Video-Kopfimpulstest oder thermische Prüfung? Zeitgemäße Funktionsdiagnostik des Vestibularisschwannoms. HNO, 61(9):781–785, 2013. http://dx.doi.org/10.1007/s00106-013-2752-x.

[4]     Blödow A, Pannasch S, and Walther L. E. Detection of isolated covert saccades with the video head impulse test in peripheral vestibular disorders. Auris Nasus Larynx, 40(4):348–351, 2013. http://dx.doi.org/10.1016/j.anl.2012.11.002.

[5]     Blödow A, Blödow J, Bloching M. B, Helbig R, and Walther L. E. Horizontal vor function shows frequency dynamics in vestibular schwannoma. Eur Arch Otorhinolaryngol, 2014. http://dx.doi.org/10.1007/s00405-014-3042-2.

[6]     Blum B, Kirchhoff D, Bickmann A, Ehrt O, Straube A, and Eggert T. Heterophoria: Vergence stability and visual acuity after asymmetric saccades. Journal of Eye Movement Research, 5(5):1–9, 2012. http://www.jemr.org/download/pictures/2d/fvobpiai34juun0bsvbkw8hh68v6m6/blum_et_al_2012_final.pdf.

[7]     Bockisch C. J, Straumann D, and Weber K. P. Curing a 96-year-old patient afflicted with benign paroxysmal positional vertigo on a motorized turntable. Clin Interv Aging, 9:589–591, 2014. http://dx.doi.org/10.2147/CIA.S58785.

[8]     Bremova-Ertl T, Schiffmann R, Patterson M. C, Belmatoug N, Billette de Villemeur T, Bardins S, Frenzel C, Malinova V, Naumann S, Arndt J, Mengel E, Reinke J, Strobl R, and Strupp M. Oculomotor and vestibular findings in gaucher disease type 3 and their correlation with neurological findings. Frontiers in neurology, 8:711, 2017. http://dx.doi.org/10.3389/fneur.2017.00711.

[9]     Chen C.-C, Bockisch C. J, Olasagasti I, Weber K. P, Straumann D, and Huang M. Y.-Y. Positive or negative feedback of optokinetic signals: degree of the misrouted optic flow determines system dynamics of human ocular motor behavior. Invest Ophthalmol Vis Sci, 55(4):2297–2306, 2014. http://dx.doi.org/10.1167/iovs.13-12750.

[10]     Cleworth T. W, Carpenter M. G, Honegger F, and Allum J. H. J. Differences in head impulse test results due to analysis techniques. Journal of vestibular research : equilibrium & orientation, 27:163–172, 2017. http://dx.doi.org/10.3233/VES-170614.

[11]     Colagiorgio P, Colnaghi S, Versino M, and Ramat S. A new tool for investigating the functional testing of the vor. Front Neurol, 4:165, 2013. http://dx.doi.org/10.3389/fneur.2013.00165.

[12]     Daniel F, Morize A, Bremond-Gignac D, and Kapoula Z. Benefits from vergence rehabilitation: Evidence for improvement of reading saccades and fixations. Frontiers in integrative neuroscience, 10:33, 2016. http://dx.doi.org/10.3389/fnint.2016.00033.

[13]     Daniel F and Kapoula Z. Induced vergence-accommodation conflict reduces cognitive performance in the stroop test. Scientific reports, 9:1247, 2019. http://dx.doi.org/10.1038/s41598-018-37778-y.

[14]     Dowiasch S, Backasch B, Einhäuser W, Leube D, Kircher T, and Bremmer F. Eye movements of patients with schizophrenia in a natural environment. Eur Arch Psychiatry Clin Neurosci, 2014. http://dx.doi.org/10.1007/s00406-014-0567-8.

[15]     Dowiasch S, Marx S, Einhäuser W, and Bremmer F. Effects of aging on eye movements in the real world. Front Hum Neurosci, 9:46, 2015. http://dx.doi.org/10.3389/fnhum.2015.00046.

[16]     Dowiasch S, Wolf P, and Bremmer F. Quantitative comparison of a mobile and a stationary video-based eye-tracker. Behavior research methods, 2019. ISSN 1554-3528. http://dx.doi.org/10.3758/s13428-019-01267-5.

[17]     Eggert T, Ladda J, and Straube A. Inferring the future target trajectory from visual context: is visual background structure used for anticipatory smooth pursuit? Exp Brain Res, 196(2):205–215, 2009. http://dx.doi.org/10.1007/s00221-009-1840-3.

[18]     Göttlich M, Jandl N. M, Sprenger A, Wojak J. F, Münte T. F, Krömer U. M, and Helmchen C. Hippocampal gray matter volume in bilateral vestibular failure. Human brain mapping, 37:1998–2006, 2016. http://dx.doi.org/10.1002/hbm.23152.

[19]     Hamel J, Kraft A, Ohl S, De Beukelaer S, Audebert H. J, and Brandt S. A. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects. J Vis Exp, (67):e4427, 2012. http://dx.doi.org/10.3791/4427.

[20]     Hamel J, De Beukelaer S, Kraft A, Ohl S, Audebert H. J, and Brandt S. A. Age-related changes in visual exploratory behavior in a natural scene setting. Front Psychol, 4:339, 2013. http://dx.doi.org/10.3389/fpsyg.2013.00339.

[21]     Helmchen C, Livitzis E, Sprenger A, and Trillenberg P. Cerebellar ataxia with unilateral high frequency vestibulopathy and caloric disinhibition. Journal of the neurological sciences, 358:527–529, 2015. http://dx.doi.org/10.1016/j.jns.2015.09.379.

[22]     Hougaard D. D and Abrahamsen E. R. Functional testing of all six semicircular canals with video head impulse test systems. Journal of visualized experiments : JoVE, 2019. ISSN 1940-087X. http://dx.doi.org/10.3791/59012.

[23]     Hülse R, Hörmann K, Servais J. J, Hülse M, and Wenzel A. Clinical experience with video head impulse test in children. Int J Pediatr Otorhinolaryngol, 79(8):1288–1293, 2015. http://dx.doi.org/10.1016/j.ijporl.2015.05.034.

[24]     Jandl N. M, Sprenger A, Wojak J. F, Götlich M, Münte T. F, Krömer U. M, and Helmchen C. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure. Neuroscience, 305:257–267, 2015. http://dx.doi.org/10.1016/j.neuroscience.2015.07.089.

[25]     Janky K. L, Patterson J. N, Shepard N. T, Thomas M. L. A, and Honaker J. A. Effects of device on video head impulse test (vhit) gain. Journal of the American Academy of Audiology, 28:778–785, 2017. http://dx.doi.org/10.3766/jaaa.16138.

[26]     Korsager L, Hviid E, Schmidt J. H, Faber C, and Wanscher J. H. Reliability and comparison of gain values with occurrence of saccades in the eyeseecam video head impulse test (vhit). Eur Arch Otorhinolaryngol, 2016. http://dx.doi.org/10.1007/s00405-016-4183-2.

[27]     Machner B, Sprenger A, Füllgraf H, Trillenberg P, and Helmchen C. [video-based head impulse test. importance for routine diagnostics of patients with vertigo]. Nervenarzt, 84(8):975–983, 2013. http://dx.doi.org/10.1007/s00115-013-3824-6.

[28]     Marx S, Respondek G, Stamelou M, Dowiasch S, Stoll J, Bremmer F, Oertel W. H, Höglinger G. U, and Einhäuser W. Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from parkinson’s disease. Front Behav Neurosci, 6:88, 2012. http://dx.doi.org/10.3389/fnbeh.2012.00088.

[29]     Paulus M. M, Straube A, and Eggert T. Vergence-accommodation conflict in virtual reality displays induces phoria adaptation. Journal of neurology, 2017. http://dx.doi.org/10.1007/s00415-017-8425-z.

[30]     Reingold E. M. Eye tracking research and technology: Towards objective measurement of data quality. Vis cogn, 22(3): 635–652, 2014. http://dx.doi.org/10.1080/13506285.2013.876481.

[31]     Ruscheweyh R, Fritz A, Eggert T, Azad S.-C, and Straube A. Oculomotor disturbances in patients with chronic nonspecific spinal pain. Pain medicine (Malden, Mass.), 19:2031–2038, 2018. http://dx.doi.org/10.1093/pm/pnx291.

[32]     Strupp M, Kremmyda O, Adamczyk C, Böttcher N, Muth C, Yip C. W, and Bremova T. Central ocular motor disorders, including gaze palsy and nystagmus. J Neurol, 261 Suppl 2:S542–S558, 2014. http://dx.doi.org/10.1007/s00415-014-7385-9.

[33]     Strupp M, Kichler A, McGarvie L, and Kremmyda O. The video head impulse test: a right-left imbalance. Journal of neurology, 265:40–43, 2018. http://dx.doi.org/10.1007/s00415-018-8986-5.

[34]     Suh M.-W, Park J. H, Kang S. I, Lim J. H, Park M. K, and Kwon S. K. Effect of goggle slippage on the video head impulse test outcome and its mechanisms. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 38:102–109, 2017.http://dx.doi.org/10.1097/MAO.0000000000001233.

[35]     van Dooren T. S, Lucieer F. M. P, Janssen A. M. L, Kingma H, and van de Berg R. The video head impulse test and the influence of daily use of spectacles to correct a refractive error. Frontiers in neurology, 9:125, 2018. http://dx.doi.org/10.3389/fneur.2018.00125.

[36]     Versino M, Colagiorgio P, Sacco S, Colnaghi S, and Ramat S. Artifact avoidance for head impulse testing. Clin Neurophysiol, 125(5):1071–1073, 2014. http://dx.doi.org/10.1016/j.clinph.2013.09.024.

[37]     Walther L. E, Hörmann K, Bloching M, and Blödow A. [receptor function of the semicircular canals: Part 1: anatomy, physiology, diagnosis and normal findings]. HNO, 60(1):75–87; quiz 88, 2012. http://dx.doi.org/10.1007/s00106-011-2434-5.

[38]     Yacovino D. A, Martin L. A, Perez Akly M, and Hain T. C. Characteristics of vestibular corrective saccades in patients with slow visual saccades, vestibular disorders and controls: A descriptive analysis. PloS one, 13:e0197079, 2018. http://dx.doi.org/10.1371/journal.pone.0197079.

[39]     Yang Q, Wang T, Su N, Xiao S, and Kapoula Z. Specific saccade deficits in patients with alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age (Dordr), 35(4):1287–1298, 2013. http://dx.doi.org/10.1007/s11357-012-9420-z.

[40]     Yiu Y.-H, Aboulatta M, Raiser T, Ophey L, Flanagin V. L, Zu Eulenburg P, and Ahmadi S.-A. Deepvog: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning. Journal of neuroscience methods, 324:108307, 2019. ISSN 1872-678X. http://dx.doi.org/10.1016/j.jneumeth.2019.05.016.

One outstanding research tool developed by the research group is the gaze-driven EyeSeeCam. It is able to track the eye movements and simultaneously steer a moveable camera in the direction of the gaze of its wearer. Thus is records the retinal content of the wearer.  The gaze-driven EyeSeeCam won the robo days award 2008.

Unfortunately, the gaze-driven EyeSeeCam is not available for sale.

An application of the gaze-driven EyeSeeCam in a real-world visual search study (open access article) with colorblinds searching for berry-like objects can be found here: Frontiers in Human Neuroscience.

More videos see here: